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Strain from three measured stretches 
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Abstract--In order to solve for the strain on a plane, three measured stretches are required. For an algebraic 
solution, an equation for the value of reciprocal quadratic elongation 2'  in a specified direction is needed, and it 
may be formed directly from the matrix representation of the finite strain tensor and the direction cosines relative 
to a co-ordinate system. Three of these equations, one for each measured stretch are then solved simply and 
directly for 2~ and ,~.~ using matrix methods. 

INTRODUCTION 

THE GRAPHICAL solution of the problem of determining 
the strain from three stretches in a plane is well known, 
but an algebraic solution would also be useful. Ramsay 
& Huber (1983, p. 91) present a set of equations whose 
unknowns are 2~ , 2~ and several orientational angles. 
As they observe, however, the solution of these equa- 
tions is not easy. Sanderson (1977) offered one 
approach, but there is an even simpler formulation that 
provides an easy solution to this problem. This note 
shows how to obtain an equation for 2' (reciprocal 
quadratic elongation) which is linear in its unknowns, 
and how to determine the strain from three such equa- 
tions in a simple way. 

THE EQUATION 

The key is an equation in terms of the components of 
the general finite-strain tensor rather than principal 
values. Following Nye (1960, p. 157) we can obtain such 
an expression for 2' from the matrix representation of 
the finite-strain tensor in two dimensions 

r2-x 2yy/LsinY'y][C°S 0'°'] 2' = [cos o' sin O'][yy x • (1) 

After expanding, and using the equality of the off- 
diagonal terms, we have, 

r t 2 '  = 2" x COS 2 (9' + 2)'xy COS O' s in  O' + 2yy sin 2 0 ' .  (2) 

FINDING THE STRAIN 

With three unknowns, we need to measure three 
stretches in a plane, and we must then solve three of 
these equations for the unknown components of the 
strain tensor. With the identity sin 20' = 2 sin 0' cos 0% 
the three equations are, 

s 2ta = 2~x COS 2 0 a + )txy s in  20" + 2;y sin 2 0 a 

2/, = 2% cos 2 0k + y'~y sin 20k + 2yy sin 2 0k (3) 
t ! 2 '  = 2~x COS 2 0 '  + ~xy s in  20"  + 2yy sin 2 0c. 

These three equations could, of course, be solved for the 
three unknowns by ordinary algebra. Matrix algebra 
offers a simpler, more direct approach. We now write 
these equations in matrix form, 

=/0 1 0H/ x,, / (4) 
LOb 0;: 0;3._]LAyy._ I 

where the 0~j are the corresponding orientation factors 
of the three equations. 

The problem of three stretched belemnites from 
Ramsay & Huber (1983, p. 97) will show how a solution 
may be obtained. First, we need a co-ordinate system to 
describe the deformed state. Any arbitrary set of axes 
will do. We take the x' axis to be horizontal and the 
orientation of each of the three belemnites is then 
defined by the angle 0' it makes with this direction 
(Fig. 1). The stretch and orientation associated with 
each of the three lines are then, 

S a = 1.56, 0" = +082 ° 

Sb= 1.82, 0 ~ = - - 1 2 6  ° 

So= 2.38, O'c= +014 ° • 

Next, we form the matrix equation for this specific 
problem 

0.41091] F0.01937 0.27564 0.98063]F2;,x] 

0.30190/=/0.34549 0.95106 0 .6545 l i lY ,y / .  (5) 

0.176541 L0.94147 0.46947 o.05853/L2yyl 

l 
Fig. 1. Strain ellipse from three stretched lines in a plane (data from 

Ramsay & Huber 1983, p. 97). 
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In order to solve this equation, we premultiply both 
sides by the inverse of the 3 x 3 matrix (forming this 
inverse is a standard technique in matrix algebra; see, 
for example, Gere & Weaver 1965, p. 55). With this 
inverse we then have, 

I3.).ii] [ 0 .44963-0 .79387  1.344241 F0.41091 1 
= - 06 03  64781 -0 8 78!10 0 90/ 

~yy 1.31023 -0.44749 0.13726_1 10.17654_1 

(6) 

Performing this multiplication, we obtain the three inde- 
pendent components of the strain tensor. In matrix 
form, these are 

(7) 
~';x 2;yj -0.04305 0.42753]" 

The eigenvalues of this matrix are the two principal 
reciprocal quadratic elongations, and they can be found 
from its characteristic equation; see, for example, Gere 
& Weaver (1965, p. 109). The results are 

2{ = 0.18 and )l~ = 0.43. 

The eigenvectors give the orientation of these principal 
values; see, for example Gere & Weaver (1965, p. 111), 
and these establish the two orientational angles, which 
are 
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0~ = 9.7 ° and 0~ = -80.3 °. 

These results are essentially identical to those obtained 
graphically by Ramsay & Huber (1983, p. 104). 

CONCLUSIONS 

An equation for 2' which is linear in the independent 
components of the finite-strain tensor is formed directly 
from its matrix representation and direction cosines. 
With three measured stretches, these three components 
are then easily found using matrix algebra. This same 
approach can be used in a variety of other problems, 
including problems of strain in three dimensions. All the 
required manipulations are easily programmed, even on 
a hand-held calculator. A FORTRAN 77 program is 
available on request. 
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